Changes in the nuclear envelope environment affect spindle pole body duplication in Saccharomyces cerevisiae.

نویسندگان

  • Keren L Witkin
  • Jennifer M Friederichs
  • Orna Cohen-Fix
  • Sue L Jaspersen
چکیده

The Saccharomyces cerevisiae nuclear membrane is part of a complex nuclear envelope environment also containing chromatin, integral and peripheral membrane proteins, and large structures such as nuclear pore complexes (NPCs) and the spindle pole body. To study how properties of the nuclear membrane affect nuclear envelope processes, we altered the nuclear membrane by deleting the SPO7 gene. We found that spo7Δ cells were sickened by the mutation of genes coding for spindle pole body components and that spo7Δ was synthetically lethal with mutations in the SUN domain gene MPS3. Mps3p is required for spindle pole body duplication and for a variety of other nuclear envelope processes. In spo7Δ cells, the spindle pole body defect of mps3 mutants was exacerbated, suggesting that nuclear membrane composition affects spindle pole body function. The synthetic lethality between spo7Δ and mps3 mutants was suppressed by deletion of specific nucleoporin genes. In fact, these gene deletions bypassed the requirement for Mps3p entirely, suggesting that under certain conditions spindle pole body duplication can occur via an Mps3p-independent pathway. These data point to an antagonistic relationship between nuclear pore complexes and the spindle pole body. We propose a model whereby nuclear pore complexes either compete with the spindle pole body for insertion into the nuclear membrane or affect spindle pole body duplication by altering the nuclear envelope environment.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

MPS3 mediates meiotic bouquet formation in Saccharomyces cerevisiae.

In meiotic prophase, telomeres associate with the nuclear envelope and accumulate adjacent to the centrosome/spindle pole to form the chromosome bouquet, a well conserved event that in Saccharomyces cerevisiae requires the meiotic telomere protein Ndj1p. Ndj1p interacts with Mps3p, a nuclear envelope SUN domain protein that is required for spindle pole body duplication and for sister chromatid ...

متن کامل

Kinetochore microtubule interaction during S phase in Saccharomyces cerevisiae.

In the budding yeast Saccharomyces cerevisiae, microtubule-organizing centers called spindle pole bodies (SPBs) are embedded in the nuclear envelope, which remains intact throughout the cell cycle (closed mitosis). Kinetochores are tethered to SPBs by microtubules during most of the cell cycle, including G1 and M phases; however, it has been a topic of debate whether microtubule interaction is ...

متن کامل

Genetic Analysis of Mps3 SUN Domain Mutants in Saccharomyces cerevisiae Reveals an Interaction with the SUN-Like Protein Slp1

In virtually all eukaryotic cells, protein bridges formed by the conserved inner nuclear membrane SUN (for Sad1-UNC-84) domain-containing proteins and their outer nuclear membrane binding partners span the nuclear envelope (NE) to connect the nucleoplasm and cytoplasm. These linkages are important for chromosome movements within the nucleus during meiotic prophase and are essential for nuclear ...

متن کامل

NDC1: a nuclear periphery component required for yeast spindle pole body duplication

The spindle pole body (SPB) of Saccharomyces cerevisiae serves as the centrosome in this organism, undergoing duplication early in the cell cycle to generate the two poles of the mitotic spindle. The conditional lethal mutation ndc1-1 has previously been shown to cause asymmetric segregation, wherein all the chromosomes go to one pole of the mitotic spindle (Thomas, J. H., and D. Botstein. 1986...

متن کامل

Localization of Core Spindle Pole Body (SPB) Components during SPB Duplication in Saccharomyces cerevisiae

We have examined the process of spindle pole body (SPB) duplication in Saccharomyces cerevisiae by electron microscopy and found several stages. These include the assembly, probably from the satellite, of a large plaque-like structure, the duplication plaque, on the cytoplasmic face of the half-bridge and its insertion into the nuclear envelope. We analyzed the role of the main SPB components i...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Genetics

دوره 186 3  شماره 

صفحات  -

تاریخ انتشار 2010